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Automated Variable Weighting in
k-Means Type Clustering

Joshua Zhexue Huang, Michael K. Ng, Honggiang Rong, and Zichen Li

Abstract—This paper proposes a k-means type clustering algorithm that can automatically calculate variable weights. A new step is
introduced to the k-means clustering process to iteratively update variable weights based on the current partition of data and a formula
for weight calculation is proposed. The convergency theorem of the new clustering process is given. The variable weights produced by
the algorithm measure the importance of variables in clustering and can be used in variable selection in data mining applications where
large and complex real data are often involved. Experimental results on both synthetic and real data have shown that the new algorithm
outperformed the standard k-means type algorithms in recovering clusters in data.

Index Terms—Clustering, data mining, mining methods and algorithms, feature evaluation and selection.

1 INTRODUCTION

CLUSTERING is a process of partitioning a set of objects into
clusters such that objects in the same cluster are more
similar to each other than objects in different clusters
according to some defined criteria. The k-means type
clustering algorithms [1], [2] are widely used in real world
applications such as marketing research [3] and data mining
to cluster very large data sets due to their efficiency and
ability to handle numeric and categorical variables that are
ubiquitous in real databases.

A major problem of using the k-means type algorithms in
data mining is selection of variables. The k-means type
algorithms cannot select variables automatically because
they treat all variables equally in the clustering process. In
practice, selection of variables for a clustering problem such
as customer segmentation is often made based on under-
standing of the business problem and data to be used. Tens or
hundreds of variables are usually extracted or derived from
the database in the initial selection which form a very high-
dimensional space. It is well-known that an interesting
clustering structure usually occurs in a subspace defined by
a subset of the initially selected variables. To find the
clustering structure, it is important to identify the subset of
variables.

In this paper, we propose a new k-means type algorithm
called W-k-means that can automatically weight variables
based on the importance of the variables in clustering.
W-k-means adds a new step to the basic k-means algorithm
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to update the variable weights based on the current partition
of data. We present a weight calculation formula that
minimizes the cost function of clustering given a fixed
partition of data. The convergency theorem of the new
clustering process is proven.

We present a series of experiments conducted on both
synthetic and real data. The results have shown that the
new algorithm outperformed the standard k-means type
algorithms in recovering clusters in data.

The variable weights produced by W-k-means measure the
importance of variables in clustering. The small weights
reduce or eliminate the effect of insignificant (or noisy)
variables. The weights can be used in variable selection in
data mining applications where large and complex real data
are often involved.

The rest of this paper is organized as follows: Section 2 is
a brief survey of related work on variable weighting and
selection. Section 3 introduces the basic k-means algorithm.
Section 4 presents the W-k-means algorithm. Experiments
on both synthetic and real data are presented in Section 5.
We conclude this paper in Section 6.

2 REeLATED WORK

Variable selection and weighting have been important
research topics in cluster analysis [3], [4], [5], [6], [7], [8],
(91, [10], [11], [12], [13].

Desarbo et al. [4] introduced the first method for variable
weighting in k-means clustering in the SYNCLUS algorithm.
The SYNCLUS process is divided into two stages. Starting
from an initial set of weights, SYNCLUS first uses the
k-means clustering to partition data into k clusters. It then
estimates a new set of optimal weights by optimizing a
weighted mean-square, stress-like cost function. The two
stages iterate until they converge to an optimal set of
weights. The algorithm is time-consuming computationally
[3], so it cannot process large data sets.

De Soete [5], [6] proposed a method to find optimal
variable weights for ultrametric and additive tree fitting.
This method was used in the hierarchical clustering
methods to solve the variable weighting problem. Since
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the hierarchical clustering methods are computationally
complex, De Soete’s method cannot handle large
data sets. Makarenkov and Legendre [11] extended
De Soete’s method to optimal variable weighting for
the k-means clustering. The basic idea is to assign each
variable a weight w; in calculating the distance between
two objects and find the optimal weights by optimizing
the cost function L,(wy,ws,...,w,) = 2511(27511 &z /ny).
Here, K is the number of clusters, n; is the number of
objects in the kth cluster, and d;; is the distance between
the ith and the jth objects. The Polak-Ribiere optimiza-
tion procedure is used in minimization, which makes the
algorithm very slow. The simulation results in [11] show
that the method is effective in identifying important
variables, but not scalable to large data sets.

Modha and Spangler [13] very recently published a new
method for variable weighting in k-means clustering. This
method aims to optimize variable weights in order to obtain
the best clustering by minimizing the ratio of the average
within-cluster distortion over the average between-cluster
distortion, referred to as the generalized Fisher ratio ). To
find the minimal @), a set of feasible weight groups were
defined. For each weight group, the k-means algorithm was
used to generate a data partition and @ was calculated from
the partition. The final clustering was determined as the
partition having the minimal . This method of finding
optimal weights from a predefined set of variable weights
may not guarantee that the predefined set of weights would
contain the optimal weights. Besides, it is also a practical
problem to decide the predefined set of weights for high-
dimensional data.

Friedman and Meulman [12] recently published a method
to cluster objects on subsets of attributes. Instead of assigning
aweightto each variable for the entire data set, their approach
is to compute a weight for each variable in each cluster. As
such, p x L weights are computed in the optimization process,
where pis the total number of variables and L is the number of
clusters. Since the objective function is a complicated highly
nonconvex function, direct method to minimize it has not
been found. An approximation method is used to find
clusters on different subsets of variables by combining
conventional distance-based clustering methods with a
particular distance measure. Friedman and Meulman’s work
is related to the problem of subspace clustering [14].
Scalability is a concern because their approximation method
is based on the hierarchical clustering methods.

The fuzzy k-means type clustering algorithms [15], [16]
use the k-means clustering process to calculate the weights
of clusters for each object that can determine which
cluster(s) the object should be assigned to. In this paper,
we adopt a similar approach that can be used to calculate
the weights for variables. In this way, variable weights can
be automatically calculated within the clustering process
without sacrificing the efficiency of the algorithm. The
weights are optimized from the entire weight space rather
than from a limited number of candidates as in Modha and
Spangler’s approach [13].

3 THE k-MEANS TYPE ALGORITHMS

Let X = {X1,X,,...,X,,} be a set of n objects. Object X; =
(®i1,Ti2,. .., 2im) is characterized by a set of m variables
(attributes). The k-means type algorithms [2], [17] search for

a partition of X into k clusters that minimizes the objective
function P with unknown variables U and Z as follows:

k nm

PU,2) =Y 3> uigd(ij,z) (1)

I=1 i=1 j=1

subject to

Dug=1, 1<i<n, (2)

where

e Uisann x kpartition matrix, u;; is a binary variable,
and wu;; = 1 indicates that object i is allocated to
cluster ;

o Z=A{Z,2,,...,2Z}is a set of k vectors representing
the centroids of the k clusters;

o d(;j,z;) is a distance or dissimilarity measure
between object ¢ and the centroid of cluster [ on the
jth variable. If the variable is numeric, then

d(@ig, 215) = (xij — 21)" (3)

If the variable is categorical, then

The algorithm is called k-modes if all variables in the data
are categorical or k-prototypes if the data contains both
numeric and categorical variables [1].

The above optimization problem can be solved by
iteratively solving the following two minimization problems:

1. Problem P;: Fix Z=Z and solve the reduced
problem P(U, Z),
2. Problem P: Fix
problem P(U, Z).

Problem P, is solved by

U=U and solve the reduced

inl =1 lf Z d(l’i‘j, Z[\j) S Z d(Ii?]‘, Zw‘) fOl" 1 S t S k
=1 =1
uiy =0 for t#1

(5)
and problem P is solved for the numeric variables by
Z Ui, Tij
2= 7’:1n forl<i<kand1<j<m. (6)
> Uiy
i=1

If the variable is categorical, then

2l = a;, (7)

where o’ is the mode of the variable values in cluster [, [1].

The basic algorithm to minimize the objective function P
is given in [1], [15], [18].

One of the drawbacks of the k-means type algorithms is
that they treat all variables equally in deciding the cluster
memberships of objects in (5). This is not desirable in many
applications such as data mining where data often contains
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Fig. 1. Clustering with noise data. (a) Two clusters in the subspace of z;,z>. (b) Plot of the subspace of z;,xs. (c) Plot of the subspace of z, 3.

(d) Two discovered clusters in the subspace of z1, 5.

a large number of diverse variables. A cluster structure in a
given data set is often confined to a subset of variables
rather than the entire variable set. Inclusion of other
variables can only obscure the discovery of the cluster
structure by a clustering algorithm.

Fig. 1 shows the effect of a noise variable to the clustering
results of the k-means algorithm. The data set X has three
variables 1,3, 23. Two normally distributed clusters are
found in (1, z2) (see Fig. 1a). z3 is a random variable with a
uniform distribution. No cluster structure can be found in
(21,23) and (z2,x3) (see Figs. 1b and 1c). If we apply the
k-means algorithm to X, the two clusters in (x;, z2) may notbe
discovered because of the noise variable z3. However, if we
assign weights 0.47, 0.40, and 0.13 to variables z;, 2,
and 3, respectively, in the distance function (5), the
k-means algorithm will recover the two clusters as plotted in
Fig. 1d. Real data sets in data mining often have variables in
the hundreds and records in the hundreds of thousands, such
as the customer data sets in large banks. How to calculate the
variable weights automatically in the clustering process to
distinguish good variables like x;, x; from noise variables like
x3 is a great challenge. In the next section, we present the
W-k-means algorithm that can automatically calculate the
variable weights.

4 THE W-k-MEeANS TYPE ALGORITHMS

Let W = [wy, ws,. .., wy,| be the weights for m variables and
B be a parameter for attribute weight w;, we modify (1) as

n m

k
P(U,Z,W) ZZszwdwzm (®)

=1 i=1 j=

subject to
Zu71—1 1<i<n
uzze{Ol} 1<i<n, 1<I<k (9)
ijfl 0<w,; <.
=1

Similar to solving (1), we can minimize (8) by iteratively
solving the following three minimization problems:

1. Problem P;: Fix Z=Z2 and W =W, solve the
reduced problem P(U, Z,W);
2. Problem Py: Fix U=U and W =W, solve the
reduced problem P(U Z,W);
3. Problem P;: Fix U = U and Z = Z, solve the reduced
problem P(U, Z,W).
Problem P, is solved by

wy=1 if Z wld(z 5, 215) < Z (i, 215)

t#1
and problem P is solved in (6) and (7). The solution to

uip =0 for

problem P; is given in Theorem 1.
Theorem 1. Let U = U and Z = Z be fixed.

1. When 8> 1o0r <0, P(Ij, Z, W) is minimized iff

0 if D;j=0
. 1 i .
b, = { T i D;#0,

> (7]

t=1

(11)
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where

(12)
=1 =1
and h is the number of variables where D; # 0.
2. When g=1, P(U, Z, W) is minimized 1ﬁ
711]'()‘/ =1 and "I}j =0, ‘77& j/7
where Dy < Dj for all j.
Proof.
1. We rewrite problem P; as
m 5 k n
PU,Z,W) = w) > > did(xij, z;)
=1 =1 i=1
. (13
=2 w;Dj,
=1

where D;s are m constants for fixed U and Z.

If D; = 0, according to (12), the jth variable has
a unique value in each cluster. This represents a
degenerate solution, so we assign @w; =0 to all
variables where D; = 0.

For the h(<m) variables where D; # 0, we
consider the relaxed minimization of P; via a
Lagrange multiplier obtained by ignoring the
constraint >, w; = 1. Let a be the multiplier
and ¥(W,a) be the Lagrangian

h h
) = Zw?D, + a(z w;j — 1).
=1 =1

If (W, @) is to minimize ¥(W, ), its gradient in
both sets of variables must vanish. Thus,

(14)

OV (W, &)

A~ 3— A .

o0, zﬂw‘j le—l—a:O for1 <j<h, (15)
QV(W,a)
%:ijq:o. (16)

From (15), we obtain
N —&\71 .
= == <3< h.
(ny (ﬂDj) for1<j<h (17)
Substituting (17) into (16), we have
S (a7 (18)
— =1. 18
t=1 6Df
From (18), we derive
. VAN
—a)yT =1 —) | 19
oty () )
Substituting (19) into (17), we obtain
1
Wy =—71. (20)

> [5]"

t=1

2. It is clear that, when w; =1, the corresponding
objective function value is equal to Dj. Let

(wy,wa, -+, wy,) be a feasible solution of the
optimization problem. Using the fact that
> i w;j=1 and the feasible solution space
(Z;”:lezl and 0<w; <1 for 1<j<n) is
convey, it is straightforward to show that

m
D]'f S ijDJ
j=1

Therefore, when we set w; =1, the optimal
solution can be determined. 0

The algorithm to solve (8) is given as follows:

Algorithm—(The W-k-Means type algorithms)

Stepl. Randomly choose an initial Z° = {Z;, Z, ..., Z;}
and randomly generate a set of initial weights W =
[w, wf, ..., w)] (3275, w; =1). Determine U’ such that

PU°, 2" W“) is minimized. Set £ = 0;

Step2.Let Z = Z' and W = W?, solve problem P(U, Z,W)
to obtain U If P(U"',Z, W)= P(U',Z,W), output
(U, VA , W) and stop; otherwise, go to Step 3;

Step3. Let U=U"! and W =W, solve problem
P(U,Z,W) to obtain Z'*'. If P(U,Z"', W) = P(U,Z',W),
output (U, Z', W) and stop; otherwise, go to Step 4;

Stepd. Let U=U""' and Z = Z"*', solve problem
P(U,Z,W) to obtain WL, If P(U,Z, W) = P(U, Z,W?),
output (U , Z , W) and stop; otherwise, set t =t + 1 and go
to Step 2.

Theorem 2. The above algorithm converges to a local minimal
solution in a finite number of iterations.

Proof. We first note that there are only a finite number of
possible partitions U. We then show that each possible
partition U appears at most once by the algorithm. Assume
that U = U"2, where t; # t,. We note that, given U’, we
can compute the minimizer Z' which is independent of W'.
For U" and U", we have the minimizers Z" and Z%,
respectively. Itis clear that Z"' = Z" since U" = U™.Using
U and Z%, and U" and Z®, we can compute the
minimizers W" and W, respectively, (Step 4) according
to Theorem 1. Again, W" = W, Therefore, we have

PU", Z" W) = P(U?, 2", W").

However, the sequence P(-,-,-) generated by the algo-
rithm is strictly decreasing. Hence, the result follows.

Since the W-k-means algorithm is an extension to the
k-means algorithm by adding a new step to calculate the
variable weights in the iterative process, it does not
seriously affect the scalability of the k-means type
algorithms in clustering large data; therefore, it is
suitable for data mining applications.

The computational complexity of the algorithm is
O(tmnk), where t is the total number of iterations
required for performing Step2, Step3, and Step4, k is
the number of clusters, m is the number of attributes, and
n is the number of objects. 0

4.1 Variable Weighting

Given a data partition, the principal for variable weighting
is to assign a larger weight to a variable that has a smaller
sum of the within cluster distances and a smaller one to a
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Centroids and Standard Deviations of Clusters in Different Variables

Cluster Cluster centroids

1 | (0.547,0.728,0.424,0.492,0.561)
2| (0.299,0.585,0.318,0.555,0.455)

TABLE 1
Standard deviations No. of points
(0.054,0.044,0.071,0.288,0.302) 100
(0.061,0.044,0.069,0.269,0.274) 100
(0.055,0.050,0.075,0.263,0.274) 100

3 (0.422,0.452,0.636,0.520,0.536)

variable that has a larger sum of the within cluster
distances. The sum of the within cluster distances for
variable z; is given by (12) in Theorem 1 and the welght W;
for x; is calculated by (11). However, the real weight wj to
variable z; is also dependent on the value of 3 (see the
objective function (8)). Based on the above principal, we can
analyze what values we can choose for 3.

When 8 =0, (8) is equal to (1), regardless of ;.

When § =1, w; is equal to 1 for the smallest value of D;.
The other weights are equal to 0. Although the ob]ectlve
function is minimized, the clustering is made by the
selection of one variable. It may not be desirable for high-
dimensional clustering problems.

When 0 < 3 < 1, the larger D, the larger w;, so does wj
This is against the variable weighting principal, so we
cannot choose 0 < 3 < 1.

When B > 1, the larger Dj, the smaller wj, and the smaller
w’ ;- The effect of variable z; with large D; is reduced.

When § < 0, the larger Dj, the larger w;. However, w;
becomes smaller and has less weighting to the variable in
the distance calculation because of negative 5.

From the above analysis, we can choose 3 < 0 or 8 > 1in
the W-k-means algorithm.

5 EXPERIMENTS

In this section, we use experimental results to demonstrate
the clustering performance of the W-k-means algorithm in
discovering clusters and identifying insignificant (or noisy)
variables from given data sets. Both synthetic data and real
data were used in these experiments. In clustering real data
with mixed numeric and categorical values, the k-prototypes
algorithm [1] and the W-k-prototypes algorithm were used.

5.1 Experiment on Synthetic Data

Synthetic data is often used to validate a clustering
algorithm [19]. In this experiment, we used a constructed
synthetic data set with known normally distributed clusters
and noise variables to verify the performance of the
W-k-means algorithm in discovering the clusters inherent
in a subspace of the data domain and the properties of the
algorithm in identifying the noise variables in the data set.

5.1.1 Synthetic Data Set

The synthetic data set contains five variables and 300 records
thatare divided into three clusters normally distributed in the
first three variables. Each cluster has 100 points. The last two
variables represent uniformly distributed noise points. The
centroids and standard deviations of the three clusters are
given in Table 1. The centroids of the first three variables are
well separated and the standard deviations are small. The
centroids of the two noise variables are very close and the
standard deviations are much larger than those of the first
three variables.

Fig. 2 plots the 300 points in different two-dimensional
subspaces. In the figure, zy,x;,zs represent the three
variables that contain three normally distributed clusters,
while z3, x4 are the two noise variables that are uniformly
distributed in the unit square. Because the three clusters are
not identifiable in a subspace with a noise variable, the noise
variables introduce difficulties to the discovery of the three
clusters embedded in the data set. With this noise data set, we
could demonstrate that the W-k-means algorithm was able to
recover the three clusters and identify the two noise variables.

5.1.2 Evaluation Method

Since the cluster labels of the data points in the synthetic
data set were known, the Rand Index was used to evaluate
the performance of the clustering algorithm [20]. Let C' =
{C4,Cy,Cs} be the set of three clusters in the data set and
C' ={C1,Cy, Cy} the set of three clusters generated by the
clustering algorithm. Given a pair of points (X;, X;) in the
data set, we refer to it as

1. SSif both points belong to the same cluster in C' and
the same cluster in ’,
2. DD if both points belong to two different clusters in
C and two different clusters in C’,
3. SD if the two points belong to the same cluster in C
and different clusters in C’,
4. DS if the two points belong to two different clusters
in C and to the same cluster in C'.
Let a, b, ¢, and d be the number of SS, SD, DS, and DD
pairs of points, respectively. Then, a + b+ ¢+ d = M, where
M = N(N —1)/2 is the total number of possible point pairs
in the data set and N is the number of points. The Rand
Index is calculated as

a+d
7 (21)

The Rand Index measures the fraction of the total
number of pairs that are either SS or DD. The larger the
value, the higher the agreement between C and C'.

In the meantime, we also calculated the clustering
accuracy as

R=

Zk 1 i
r=100="-—, 22
. (22)
where a; is the number of points in C; that were clustered to
C! and N is the number of points in the data set. r is the
percentage of the points that were correctly recovered in a

clustering result.

5.1.3 Results

It is well known that the standard k-means clustering process
produces alocal optimal solution. The final result depends on
the initial cluster centroids. In the W-k-means clustering
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Fig. 2. Synthetic data set with three normally distributed clusters in the three-dimensional subspace of z,z;,z, and two noise variables 3, x.
(a) The subspace of z(,z;. (b) The subspace of z, z5. (c) The subspace of 1, z,. (d) The subspace of zy, z3. () The subspace of x(, z4. (f) The
subspace of z1,z3. (g) The subspace of z;,z4. (h) The subspace of x5, z3. (i) The subspace of x,, x4. (j) The subspace of z3, z4.

process, the initial weights also affect the final result of
clustering. To test the performance of the W-k-means
algorithm, we first fixed the initial cluster centroids and ran
the W-k-means algorithm on the synthetic data with different
sets of initial weights. Then, we ran the W-k-means algorithm
with different sets of initial cluster centroids and initial
weights. Here, we set 3 =8 in these experiments. We
compared the W-k-means results with the results from the
standard k-means algorithm and the k-means algorithm with
the weighted distance function, i.e., a set of weights were used
in the distance function, but the weights did not change
during the k-means clustering process.

Given a fixed set of initial cluster centroids, the Monte
Carlo sampling method [21] was used to generate a set of

random initial weights. First, we used the weights in the
distance function to run the k-means algorithm and generated
a clustering result. Second, we used the weights as the initial
weights to run the W-k-means algorithm in the following way.
Given the initial weights, the k-means algorithm was run with
the weighted distance function until it converged. Then, a
new set of weights were calculated using (11). With the new
weights as the initial weights and the current cluster centroids
as the initial centroids, the k-means algorithm restarted to
produce another partition. This process repeated until it
converged, i.e., the objective function (8) was minimized.
Fig. 3 shows a typical convergence curve of the W-k-means
algorithm. The horizontal axis represents the number of
iterations and the vertical axis represents the value of the
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0 2 4 6 8 10 12 14

Fig. 3. Convergence curve of the W-k-means algorithm.

objective function (8). Each point on the curve represents a
partition generated by one iteration of the k-means clustering
process. Starting from a set of initial centroids and a set of
initial weights, the algorithm first converged after six
iterations. A new set of weights W, was computed. Using
W as the initial weights and the current cluster centroids, the
k-means process restarted again. We can see that the objective
function had a significant drop after the new weights W; were
introduced. The k-means process converged again after two
new iterations. Then, a set of new weights W, was computed.
This process continued until the local minimal value of the
objective function was reached. The final set of weights W}
was obtained. We note that, in each step, the weighted
distance function was fixed since the weights for the variables
were fixed. Therefore, the corresponding weighted distance
function space was well-defined at each step. We expected
thatthe smaller the value of objective function value, the closer
the data points under the weighted distance function space
would be. Weremark thatby using similar arguments to those

in the proof of Theorem 2, it can be shown that the above
process is also convergent.

Table 2 lists 10 sets of randomly generated weights and
the clustering results by the k-means algorithm. All
clustering runs started with the same initial cluster
centroids. Rand Index and clustering accuracy were used
to evaluate the clustering results. We can see that only the
second run produced a more accurate clustering result.

Using the 10 sets of randomly generated weights as the
initial weights, we ran the W-k-means algorithm 10 times on
the same data set, each starting with the same initial cluster
centroids. The clustering results and the final weights are
listed in Table 3. We can see that five runs achieved very
accurate clustering results. Two results achieved 100 percent
of recovery of the original clusters in the data set. These results
show that the W-k-means algorithm was much superior to the
k-means algorithm that used randomly generated weights to
weight variables in the distance function.

From Table 3, we can also observe that the five good
clustering results have very similar weights for the
variables. The first three weights are much larger than the
last two weights. These weights clearly separated the noise
variables from the normal ones. In the good clustering
results, because of the larger weighting values, the normal
variables had much bigger impact on clustering than the
noise variables. The weights of the five good clustering
results are plotted in Fig. 4a and the corresponding
randomly generated initial weights are plotted in Fig. 4b.
The noise variables were not identifiable from the randomly
generated weights, but could be easily identified from the
final weights produced by the W-k-means algorithm.

Because the k-means type algorithms do not produce the
global optimal solution, their clustering results depend on the
initial cluster centroids and the initial weights. In practice, we
need to run the W-k-means algorithm several times on the

TABLE 2
Ten Randomly Generated Weights and the Clustering Results by the k-Means Algorithm
Num | weightO | weightl | weight2 | weight3 | weight4 | Rand Index | Accuracy
1 0.2185 | 0.2845 | 0.0809 | 0.2457 | 0.1704 0.7577 0.7467
2 0.2968 | 0.3261 | 0.0982 | 0.1740 | 0.1049 0.9738 0.9800
3 0.3637 | 0.1018 | 0.1642 | 0.2899 | 0.0804 0.7766 0.7967
4 0.2661 | 0.1881 | 0.0680 | 0.2413 | 0.2365 0.6738 0.6033
5 0.3841 | 0.1989 | 0.0841 | 0.1500 | 0.1829 0.7795 0.7933
6 0.3337 | 0.0510 | 0.0496 | 0.2351 | 0.3305 0.6174 0.5367
7 0.3377 | 0.0285 | 0.1386 | 0.0844 | 0.4109 0.5661 0.4367
8 0.2804 | 0.2525 | 0.0821 | 0.0172 | 0.3678 0.5663 0.4367
9 0.3569 | 0.1190 | 0.0654 | 0.4327 | 0.0261 0.5545 0.3767
10 0.2503 | 0.1202 | 0.1236 | 0.3400 | 0.1658 0.5545 0.3733
TABLE 3
Ten Final Weights and the Clustering Results by the W-k-Means Algorithm
Num | weightO | weightl | weight2 | weight3 | weight4 | Rand Index | Accuracy
1 0.3021 | 0.4137 | 0.2268 | 0.0301 | 0.0273 1.0000 1.0000
2 0.3021 | 0.4137 | 0.2268 | 0.0301 | 0.0273 1.0000 1.0000
3 0.3078 | 0.4035 | 0.2310 | 0.0302 | 0.0274 0.9956 0.9967
4 0.3078 | 0.4035 | 0.2310 | 0.0302 | 0.0274 0.9956 0.9967
5 0.3078 | 0.4035 | 0.2310 | 0.0302 | 0.0274 0.9956 0.9967
6 0.3249 | 0.1362 | 0.1212 | 0.0814 | 0.3362 0.6204 0.5533
7 0.1204 | 0.0942 | 0.0850 | 0.0601 | 0.6403 0.5721 0.4500
8 0.1204 | 0.0942 | 0.0850 | 0.0601 | 0.6403 0.5721 0.4500
9 0.1092 | 0.0826 | 0.0772 | 0.6822 | 0.0487 0.5545 0.3767
10 0.1091 | 0.0826 | 0.0772 | 0.6824 | 0.0487 0.5545 0.3733
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Fig. 4. (a) Plots of the final weights of the five good clustering results. (b) Plots of the initial weights of the five good clustering results.

1.

Rand Index

o o o o

[ I N R B

8.00E-05 9.00E-05 1.00E-04 1.10E-04

1.20E-04

1.30E-04 1.40E-04 1.50E-04 1.60E-04 1.70E-04

Objective Function Value
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Fig. 6. Plot of the Rand Index against the values of the Log(®?) over 100 runs with different weights and the same initial cluster centroids.

same data set with different initial centroids and initial
weights. To select the best result from several runs, we
investigated the relationships between the Rand Index and
the value of the objective function (8). Fig. 5 shows the plot of
the Rand Index against the values of the objective function (8)
over 100 runs with the same initial cluster centroids and
different initial weights. From this figure, we can see the
linear relationship between the Rand Index and the value of
the objective function. The smaller the value of the objective
function, the higher the Rand Index. This indicates that we
can select the result with the minimal objective function value
as the best result from several runs. A further interesting
observation was that the upper left point in Fig. 5 was, in fact,
a presentation of 67 clustering results that achieved the
highest Rand Index (equal to 1.0). This result implies that the
W-k-means algorithm has a high chance to produce a good
clustering result in just a few runs with different initial
centroids and initial weights. This nice property can save a lot
of time in finding a good clustering from large data sets in
data mining.

To compare with the method of using the generalized
Fisher ratio Q) to select the best result from several runs, we
simulated the process in [13]. For each set of randomly
generated weights by the Monte Carlo method, we ran the
k-means algorithm with the weights to weight the variables in
the distance function and calculated @ from the clustering
result. We remark that the weights for the variables were
fixed in the clustering process, which was different from the
W-k-means algorithm. Fig. 6 shows the plot of the Rand Index
against Log(Q)) over 100 runs with the same initial cluster
centroids and different initial weights. We can also observe

the linear relationship between the Rand Index and Log(Q),
which shows that @ is also an indicator to the best clustering
result from several runs. However, we have found in Fig. 6
that the result with the minimal Log(Q®) value did not give the
largest Rand Index. Moreover, the upper left point in Fig. 6
only represents a few results that achieved the highest Rand
Index. This implies that, if Q) is used as an indicator, more runs
are needed to obtain a good clustering.

According to the above results, we see that the W-k-means
algorithm can improve the clustering results by updating the
weights for the variables through minimization of the
objective function (8). We recall in Fig. 4a that the important
variables and the noise variables can be identified in the
proposed clustering process. However, chance is very small
for the randomly generated weights to identify noise
variables. It is not feasible to predefine a very large number
of weights for high-dimensional data, as used in [13].
Furthermore, using @ as an objective function to optimize,
the fast, single automated algorithm has not yet been found
[13]. Therefore, the W-k-means algorithm to optimize the
objective function (8) has an advantage in processing very
large data sets.

Table 4 shows the clustering results from 10 sets of
randomly generated initial centroids. For each set of initial
centroids, we first ran the standard k-means algorithm and
calculated the clustering accuracy and the Rand Index. The
10 results are given in the second column in the table. The
first value in a bracket is the clustering accuracy and the
second value is the Rand Index. We then ran the k-means
algorithm with randomly generated weights to weight the
distance function. For each set of initial cluster centroids,
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TABLE 4
Comparison of Results

Num No Weights Fixed Weights | Weights Changed
1 (0.4767, 0. 0768) (0.6764, 0.7317) | (0.8225, 0.8671)

2 (0.4833, 0.5796) | (0.6990, 0.7462) | (0.8453, 0.8809)
3 (0.5267, 0. ()002) (0.6871, 0.7429) | (0.7830, 0.8357)
4 (0.7200, 0.7652) | (0.6880, 0.7448) | (0.7893, 0.8403)
5 (0.7800, 0.7877) | (0.6938, 0.7445) | (0.8682, 0.8963)

6 (0.4764, 0.5780) | (0.6930, 0.7444) | (0.8337, 0.8713)

7 (0.7167, 0.7610) | (0.6960, 0.7479) | (0.7992, 0.8474)

8 (0.7767, 0.7884) | (0.6778, 0.7361) | (0.8003, 0.8478)
9 (0.7800, 0.7877) | (0.7040, 0.7515) | (0.8426, 0.8776)
10 (0.7200, 0.7589) | (0.6740, 0.7379) | (0.7810, 0.8341)
Average | (0.6457, 0.6989) | ( 0.6889, 0.7428) | (0.8156, 0.8599)

100 sets of random weights were tested. The average
clustering accuracy and the average Rand Index value are
shown in the third column. Finally, we ran the W-k-means
algorithm on 100 sets of initial weights for each set of initial
cluster centroids. The average clustering accuracy and the
average Rand Index value are shown in the fourth column.
The last row of the table gives the average results of the
multiple runs with different settings. From the average
clustering accuracy and the average Rand Index value, we
can clear see the superiority of the W-k-means algorithm in
clustering this data set.

5.2 Experiments on Real Data

5.2.1 Real Data Sets

Two real data sets, the Heart Diseases data and the Australian
Credit Card data, were obtained from the UCI Machine
Learning Repository. Both of them have numerical and
categorical attributes. We used the variable weighting version
of the W-k-prototypes algorithm in our experiments [1]
because it is able to handle mixed numeric and categorical
values.
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The Australian credit card data set consists of 690 in-
stances, each with six numerical and nine categorical
attributes. The data sets are originally classified into two
clusters: approved and rejected. Since some objects have
missing values in seven attributes, only 653 instances
were considered.

The Heart Diseases data set consists of 270 instances,
each with five numerical and eight categorical attributes.
The records are classified into two classes: absence and
presence. In this data set, all instances were considered.

To study the effect of the initial cluster centers, we also
randomly reordered the original data records and created
100 test data sets for each real data set. The accuracy of
clustering results is calculated in the same way as the
synthetical data experiments.

5.2.2 Results

Each test data set was clustered 20 times with different
integer 8 values ranging from -10 to 10, excluding 1. The
result of 8 =0 was equivalent to the result of the k-means
clustering without variable weighting. Here, we would like
to investigate how to set the value of 3 to affect the clustering
results in terms of the Rand Index and the clustering
accuracy. Each 8 value resulted in 100 clustering results
from one real data set. The accuracy of each clustering result
was calculated.

Table 5 is the summary of the 2,000 clustering results of the
Australian Credit data set with 20 different 3 values. The left
column indicates the clustering accuracy (we use clustering
accuracy here because clustering accuracy is more obvious to
compare with the real classes). Each column of a particular
B value represents 100 clustering results. Each number
indicates the number of clustering results achieving the
corresponding accuracy. The left column (5 = 0) lists the
results produced by the algorithm with equal variable
weights.

TABLE 5
The Credit Data Set: Summary of 2,000 Clustering Results Produced with Various 3 Values

Accuracy #B=-10 3=-9 3=-8 B=-7 3=-6 B=-5 B=-4 3=-3 [=-2 B=-1 B=2 B3=3 B=4 B=5 B=6 B=7 (3=8 £B=9 £=10 #=0
0.85 1 1 1
0.84
0.83 1 1 1
0.82 4 3
0.81 4 4 6 5 7 13 10 7 12 11 8 46 39 42 13
0.80 32 32 27 23 22 15 19 19 10 16 6 11 18 11 6
0.79 6 6 8 8 7 rd 7 8 8 1 2 4
0.78 3 3 3 3 4 2 1 2 2 5 3 2
0.77 T 6 6 6 4 5 5 5 T 5 19 3 3 3 2
0.76 1 2 2 2 4 5 5 6 3 3 3 3 10
0.75 4 8 4 4 4 3
0.74 4 4 1 3
0.73 1. 3 3 3 2
0.72 1
<0.71 47 47 48 53 52 53 53 53 54 54 100 100 62 43 43 43 81 81 81 52

TABLE 6
The Heart Data Set: Summary of 2,000 Clustering Results Produced with Various 3 Values

Accuracy B=-10 £#=-9 3=-8 B3=-7 B=-6 B8=-5 B=-4 B=-3 [B=-2 [=-1 pB=2 £B=3 B=4 £B=5 B=6 B=7 B=8 B=9 #=10 £3=0
0.85 1 1 1
0.84 il 3 5
0.83 2 4 5 6 8 11 13 14 2 13 5 5 5 13
0.82 1 6 4 4 4
0.81 1 1 1 2 6 50 53 5 2 2 2
0.80 1 52 72 21 10 EES 3 3 3 49
0.79 nl 5 63 17 3 14 4 il 8 4 4 1 23
0.78 93 91 88 83 7 9 4 6 4 41 97 91
0.77 12 ul 88 55 2 1 1 1
0.76 73 3 3 3
0.75 5 2 2 2
0.74 2 2 5 5 5
0.73 1 1 3 7 7 7
0.72 1 2
<0.71 5 5 5 5 7 8 9 13 1'% 18 99 14 2 1 63 63 63 15
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Fig. 7. Credit Card Data with 8 = 9. (a) The relationship between clustering accuracy and the value of the objective function (8). Shows the results of
100 clusterings of the Australian Credit Card data. Shows the results of 100 clusterings of the Heart Disease data. (b) Heart Diseases Data with 5 = 9.

Weachieved twobest results of 85 percent of the clustering
accuracy (of 0.74 of the Rand Index) at 3 = 9 and 5 = 10. This
result is 2 percent higher than our previous clustering result
[1] and the clustering result reported in [13] on the same data
set. This demonstrates that the new clustering algorithm with
variable weighting was able to produce highly accurate
clustering results. The overall good clustering results
occurred with § ranging from 4 to 7, where more than
50 percent of the clustering results got a high accuracy, while
only 22 percent of the clustering results from =0 got
accuracy of 80 percent.

Table 6 is the summary of the results of the Heart data set.
In this data set, we obtained three best results of 85 percent of
the clustering accuracy (of 0.74 of the Rand Index) at
B € {8,9,10}, which is also 2 percent higher than the result
reported in [13] on the same data set. In this data set, the
overall good results occurred at § € {-5,—4,—-3,—-2} in
comparison with the results of 3 = 0.

Fig. 7 shows the relationship between the clustering
accuracy and the value of the objective function (8). Fig. 7a
is the result of the Australian Credit Card data and Fig. 7b is
the result of the Heart Disease data. Each figure represents
100 clustering results with § = 9. From these figures, we can
see that good clustering results were correlated to small
values of the objective function (8). This indicates that,
when we use this algorithm to cluster a data set, we can

select the result with the minimal cost value from several
clustering results on the same data set.

5.2.3 Variable Selection

In clustering a data set, the algorithm produced a weight for
each variable. The importance of the variable in generating
the clustering result can be analyzed from the weights.
Table 7 shows the weights of variables of two best
clustering results from the two real data sets. According
to the weight values, we removed the last two variables
from the Australian Credit Card data set and the seventh
variable from the Heart Disease data set. We then

TABLE 7
The Weights of Variables from
Two Good Results of the Two Data Sets

Credit Card Data Heart Disease Data
vy | 0.0130 Vg 0.1670 vy | 0.1176 | vy | 0.0122
vy | 0.1652 | w10 | 0.0139 vy | 0.0091 | vig | 0.1553
vy | 0.1871 | w1y | 0.0088 vy | 0.0069 | vi; | 0.0104
vq | 0.0167 | w12 | 0.0083 4 0.1492 | w12 | 0.0070
vs | 0.0167 | vz | 0.0167 vy | 0.3331 | vi3 | 0.0122
vg | 0.0044 | **v14 | 0.0044 vg | 0.0123
vz | 0.0093 | **vy5 | 0.0021 || **v7 | 0.0064
vg | 0.5167 vg | 0.1684

** Denotes that the variables are deleted in the new clustering results.
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TABLE 8
The Credit Data Set with the 14 and 15 Variables Removed: Summary of 2,000 Clustering Results Produced with Various 5 Values
Accuracy B=-10 B=-9 B=-8 B8=-7 B=-6 B=-5 B=-4 B8=-3 B=-2 B8=-1 B=2 B=3 B=4 B=5 B3=6 B=7 B8=8 B8=9 =10 B8=0
0.86 1 1
0.85
0.84
0.83
0.82 2 4
0.81 2 1 1 2 1 1 6 32 51 41 45 2 2
0.80 35 36 40 38 38 37 36 29 28 24 7 33 16 24 19 31
0.79 10 10 6 7 5 4 3 74 10 9 1 1 1 17
0.78 3 3 3 3 1 4 1 3 1 3 1 1 10
0.77 20 20 20 20 20 20 20 21 15 11 29 2 2 10
0.76 10 16 1 4 4
0.75 5 5
0.74 1 2 2 2
0.73 1 4 4
0.72 1 2 2
<0.71 30 30 30 30 32 35 36 36 36 40 100 100 53 34 32 32 32 44 77 30
TABLE 9
The Heart Data Set with the Seventh Variable Removed: Summary of 2,000 Clustering Results Produced with Various 5 Values
Accuracy B=-10 B8=-9 B=-8 B=-7 B3=-6 B=-5 B=-4 B3=-3 B=-2 B=-1 B=2 B8=3 B=4 B=5 B=6 B=T7 B=8 B8=9 3=10 3=0
0.84 1 5 4 4 4
0.83 12 12 11 8 1 1 1 2 5 14 4 4 4 23
0.82 5 7 6 5 14 6 4 2 2 2
0.81 33 61 48 48 15 26 73 3 3 3 3 3 26
0.80 37 13 28 28 52 49 2 78 72 60 3 3 3 44
0.79 6 1 1 4 14 15 17 17 14 9 2 5 6 5 5 5
0.78 2 81 92 90 2 2 2
o g 5 91 14 8 8 8
0.76 i, 1 3 3 3
0.75 2 2 2 2
0.74 71 1 1 1
0.73 5 5 5
0.72 3 3 3
<0.71 6 6 6 T 4 3 3 3 6 9 100 13 6 1 3 4 55 55 55 7
conducted similar cluster analysis on the two reduced data ACKNOWLEDGMENTS

sets. Tables 8 and 9 show the clustering results. We obtained
the two best results of 86 percent of the clustering accuracy
(of 0.742 of the Rand Index) from the reduced Australian
Credit Card data, higher than the best result shown in
Table 5. The other improvement was that occurrences of
high accuracy results increased at most ( values. This
indicates that, after less important variables removed, it is
easier to obtain a good clustering result. Improvement was
also observed from the results of the Heart Disease data set
(see Table 9).

6 CONCLUSIONS

In this paper, we have presented W-k-means, a new k-means
type algorithm that can calculate variable weights auto-
matically. Based on the current partition in the iterative
k-means clustering process, the algorithm calculates a new
weight for each variable based on the variance of the within
cluster distances. The new weights are used in deciding the
cluster memberships of objects in the next iteration. The
optimal weights are found when the algorithm converges.
The weights can be used to identify important variables for
clustering and the variables which may contribute noise to
the clustering process and can be removed from the data in
the future analysis.

The experimental results on both synthetic data and real
data sets have shown that the W-k-means algorithm out-
performed the k-means type algorithms in recovering
clusters in data. The synthetic data experiments have
demonstrated that the weights can effectively distinguish
noise variables from the normal variables. We have also
demonstrated that the insignificant variables can be
identified according to the weight values and removal of
these variables could improve the clustering results. This
capability is very useful in selecting variables for clustering
in real data mining applications.
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